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Figure 4: A1 3 convolution in (a) unaltered (b) exact, and (c) predictive modes.
In the latter two, the weights and their corresponding input s are reordered. Figure 5: (a) The unaltered 3D convolution where all the MAC o  perations
The white boxes highlight the operations that are cut. (bubbles) are carried out. (b) The same convolution with Sna PEA, where a sig-

nificant number of operations are eliminated, delineated b the white bubbles.
after performing a pre-determined number of MAC operations P y

As mentioned, both the threshold and the number of operatioaccuracy due to misspeculating positive outputs as negaties.
are determined in the SnaPEA software workflow. If the phrti To avoid unacceptable loss while maximizing the computatio
result is less that the threshold, PE can speculativelyinaten  reduction, the predictive pass in the software part of SAaPE
the convolution and compute the activation early. ThahisRE  aims to systematically control the degree of speculation by
outputs a zero for the current convolution window. To suppor properly determining the speculation parameters. To hiter
this speculative execution, each PE is equipped with a altéicc ~ the parameters, the predictive pass formulates the pradsesn
Predictive Activation Unit (PAU) (See Sectitf). constrained optimization problem, and designs a greedyitim

to solve it. In this section, we first elaborate on the sysdmn

[1l. COMPUTATION REDUCTION IN SNAPEA
parameters, and then explain the problem formulation amd th
Figure4 demonstrates how SnaPEA reduces the computation bé(lgorlthm to determine the parameters.

an example of 1 3 convolution. Figurélaperforms the unaltered
convolution in which all of the MAC operations are performed A. Speculation Parameters

and yields “-9” as the output. Figudb illustrates convolution in As mentioned in Sectiol-A, speculation on the sign of a
the exact mode. In this mode, SnaPEA reorders the weighesl basconvolution output is performed by comparing the partiaite
on their sign, and starts the computation with the positie@its.  of a set of MAC operations with a threshold value. Therefore,
The computation is terminated after performing only two MAC the threshold value and its associated set of operatiorth@re
operations as the results is already negative, “-3". Thelsisign  parameters that control the degree of speculation. Thehibickis
check stops the computation. Although the partial sum &ft@r  merely a value that is required to be determined by the sttfua
MAC operations (*-3") has not reached the final convolutietput  the controlled speculation. However, to determine a pregeof
(*-9"), it will be converted to zero by the following ReLU oion.  operations, the software requires to select the propethtgei@ne
As such, the results is the same as the unaltered COﬂVO'Utiqpproach to select the Weights would be to sort the Weighte-in
Therefore, the exact SnaPEA does not change the final outpgéending order of their absolute values, and select thakdanger
after ReLU and does not lead to accuracy degradation. magnitude as a set of operations for performing the spémuilat

Figure4cillustrates how predictive mode cuts the operations earn this approach, although the contributions of both pessitind
lier than the exact mode. As shown, after performing the MAE 0 negative weights are taken into account, the classificaticuracy
erations on only one weight, SnaPEA predicts that the catiwol  drastically declines. The reason is that selecting thetteigith
value will eventually be negative. Even though the coredp@  the larger magnitude ignores the contributions of inputies
partial sum value is positive (*+2"), SnaPEA speculativelygers  which are, to a large degree, random and data dependent.
the ReLU function early with a negative value (e.g., “-1"figputs To mitigate the mentioned issue, SnaPEA sorts the weights
out zero. This speculation reduces the computation fromif® i ascending order, partitions them into a number of smaller
exact mode to one. In real-world CNNs, convolution is motsrof groups, and selects the weight with the largest magnitunte fr
3D and requires a relatively large number of MAC operatians aeach group. This approach enables even the smallest weights
depicted in Figuré&a Using these methods, SnaPEA can forgoappear in the set of operations for the speculation; coesdigu
a Significant number of the MAC operations as illustratedlbn the smaller weights that may couple with large input valimeh

IV. SNAPEA SOFTWARE OPTIMIZATION an opportunity to contribute to the speculation. In thisrapph,

to select a proper set of operations, the software only ies|to

Significant computation reduction provided by the preeict determine the number of groups. This means that the number of

mode comes at a price of experiencing loss in the classificat
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groups can be exploited as an indicator of a set of operatidhe

speculation parameters. Accordingly, we denote the spi@mul NU

Algorithm 1 Finding the threshold value and its associated

parameters of all kernels in all layers of a CNN(@s;N), in 1

which This a list of threshold values adlis a list of the number
of groups for selecting the corresponding operations.

N

mber of operations for all kernels in a CNN

. Inputs: CNN: a CNN modelpP: an optimization dataset,
e: Acceptable loss in classification accuracy

: Outputs: ParamCNN:

Speculation parameters (Th,N) for the CNN

B. Problem Formulation

The problem of finding the speculation parameters (iTé;N))
to maximize the computation reduction with an acceptalsiedan
be formulated as an optimization problem. In order to foataul
the problem, we measure the computation reduction by stibtya

the number of MAC operations that are performed by SnaPEA,(,
from the one performed by an unaltered CNN. However, sincers:
the number of MAC operations in the unaltered CNN is constanti2:
13:

across various inputs, maximizing the computation redocti

© XN URW

. Il Analyze each kernel individually
. function KERNEL PROFILING PASS(CNN;D ;e)
Initialize ParamK]l|[k} 0
for 8 layerl in CNN do
for 8 kernelkin layer| do
for a set of values (th,rjo
op, err =Simulate(CNN, D, k, th, n)
if err ethen
ParamK([l][K].append((th,n,op))
Sort ParamK({l][K] based on op
return ParamK

becomes equivalent to minimizing the number of MAC operatio 14

performed by SnaPEA. Accordingly, we define a function that Ef

calculates the number of MAC operations in SnaPEA as follows

Let oﬂk be the result of a single convolution window obtained 18;
19:
for the input imagel. The number of MAC operations to compute 20:
21

that the reordered weights are stored in a 1D array suchhat t ;g
293

by kernelk in layer| with the speculation parametersfTmd N

oﬁk can be calculated by the functi@p shown in (). Let assume

/' Local Optimizer to find a set of params for each layer itiially
function LOCAL OPTIMIZATION PASS(CNN;D ;e;ParamK)
for layer I in CNNdo
for tin range(0,T)Xo
for k in layer Ido
param = ParamK]l][k][t]
op, err =Simulate(CNN;D ;e;param)
if err ethen
ParamL{[l].append((param,op,err))

return ParamL

N|k speculation weights are placed at the beginning of the arr
while the remaining positive weights followed by the reniragn
negative weights are placed at the end. The functiofi)irefurns

D4

26:
N}‘ if the value of partial sum after performirliglf operations (i.e., 27
PartialSury) is less than the threshold valtml‘. Otherwise, g

the number of operations is determined by checking the dign o

: /I Parameter tuning to accommodate for cross-kernel effect

25: function ADJUSTPARAM (CNN,ParamCNN,ParamL)

for 8 layerl in CNN do
for 8 tin range(len(Param |E) do
meritL 1] = -(ParamL[][2]-ParamCNN[][2])
"~ (ParamL[][1] ParamCNN][1])

I,t = Argmax(meritL)
return (1,t)

: /I Global Optimizer to find the parameters for the entirevoek
. function GLOBAL OPTIMIZATION PASS(CNN,D ;e,ParamL)
for 8 layerl in CNN do ParamCNNI[l] = ParamL[l][0]
err =Simulate(CNN,D ,ParamCNN)
while err> e do
|,t=ADJUSTPARAM (CNN,ParamCNN,ParamL)
ParamCNN[I] = ParamL][l][t]
remove Paraml][t] from ParamL{[]
err =Simulate(CNN;D ;e,ParamCNN)
return ParamCNN

the partial sum value obtained by performing operationis thit ;gf
negative weights (i.eRartialSury, ). If a negative partial sum 3 1'
is observed, the function returns the index of the corredipgn 5,
negative weight in the array (i.ddx,, ). If none of the above 33.
cases occurs (last part1y the number of operations is set to the 34
total number of weights in the kernel. Total number of wesght 35:
of the kernel isCiny  DF  Df, in which Cjy is the number of ~ 36:
input channels of the layérand I:F is the kernel width. ggf

§N|k; if PartialSumy  Th; 39:
Op(ofl THENE) = o | it PartialSumy > Thand PartialSury, ~ ©; 40:

" Cny Df D otherwise f’é

@

. Initialize ParamCNNI[ll 0
: Paramke KERNEL PROFILING PASS(CNN;D ;e)

. . 43: Paraml= LocALOPTIMIZATION PASS(CNN;D ;e,ParamK)
The amount of computation to produce all the convolution 44

ParamCNN: GLOBAL OPTIMIZATION PASS(CNN;D;e,ParamL)

outputs is the sum of the number of MAC operations required
to produce each individual output. Based on this definjtiba
problem is translated into finding the speculation paransdhat
minimize total number of MAC operations and meet the coimtra
on the accuracy loss, which can be formulated as the foltpwin
constrained optimization problem.

Let L be a set of all the layers in a given CNK|,a set of all
the kernels in layel, D an optimization dataset,an acceptable
accuracy IossTh}‘ andN}‘ the speculation parameters of kerkel
of layerl, Oﬂk the outputs of the convolution generated by kernel
kin layer| for the input imagel from D, andAccuracy-yy and
Accuracys,,peathe classification accuracy of the CNN and the

C.

classification accuracy obtained by SnaPEA, respectiiziy,
(Th;N) can be determined by solving the following problem:

mn & & & & OpoTHINY)
TN 42D 12L k2K, 02of, @)

subjectto Accura@fy ACCUraC¥,.pea €
Finding the Speculation Parameters

In order to solve the optimization problem formulatedBswe
devise a greedy algorithm (i.e., Algorithiih The algorithm takes
a CNN, an optimization dataset, and an acceptable accuracy loss
e and returns a list nametramCNN that stores the value of the



speculation parametefsh,N). The algorithm first characterizes
the sensitivity of the CNN to the speculation performed ichea
kernel in isolation. Then, it adjusts the speculation patens for
all the kernels through a greedy search such that they Gty
minimize the computation while keeping the loss less than
Accordingly, we break the algorithm into two main stages (i.
the profiling and the optimization stage) as follows:

Profiling stage. FunctionkernelProfilingPass in Algorithm 1 pro-
files the number of operations (op) and the accuracy loss (e
corresponding to various values @h;NF) for the kernek in
layerl. The exact mode of each kernel is also included in the pr
filing results by setting (0,1) as one of the values fo(titsn). The
process is repeated for all the kernels in the CNN. The aalolept
profiling results in terms of the accuracy loss, are accatadlin

a list calledParamK. Each sub-lisparamK][l][k] in the list Paramk

is sorted in ascending order based on the value of op.

Optimization stage. The optimization stage evaluates the

combined effects of kernels and determines the proper ksiecu
parameters for them. To avoid the complexity of evaluatirgy t
combined effects, the optimization stage consists of twotfans:
LocalOptimizationPass andGlobalOptimizationPass. The function
LocalOptimizationPass in Algorithm (1), aims to evaluate the
combined effects of kernels in each layer when the speonlati
is performed in the layer in isolation. Then, the functioenitifies

a set of speculation parameters for each individual layzarsgely
that leads to acceptable accuracy with minimum operafiindo
this, the function.ocalOptimizationPass generates T configurations
for layer| such that in the-th configuration, the speculation
parameters of kernélis set tat-th profiled parameters from the
sorted listraramK[I][K]. The configurations yielding an acceptable
accuracy are selected as the set of configurations for yieella
The acceptable configurations of all layers are populatedist
calledparamL, and passed to the next function.

The second functionGlobalOptimizationPass, evaluates the
effect of speculation performed in all the layers simultargty and
adjusts their speculation parameters with respect to tesdayer
effect on the classification accuracy and computationatiotu
The output of the function is the final speculation paramseftar
all the kernels in the CNN which is stored in the latamCNN.
To find the final parameters, the function first initiakiz¢he

ParamCNN by setting the speculation parameters of each Iaye‘i'"I

| to ParamL[I][0]. This initialization leads to the maximum
computation reduction given the configurations storeehiamL.
However, the accuracy loss obtained by the initial settigy m
not be acceptable. In case of meeting the desired accunacy,
current parameters iRaramCNN is returned. Otherwise, the
parameters are adjusted iteratively until the accurag/tiesomes

less thare. For adjusting the parameters, in the next iteration

those parameters are of interest that lead to small incieése
number of operations while large improvement in the clizsdion
accuracy. Hence, we define a merit value @%=D,p, where
the larger theDey and the smaller th&®,, are, the larger the
merit is. Accordingly, the functiolobalOptimizationPass selects

the configuration inParamL and updates the corresponding
speculation parameters in the siramCNN.

V. ARCHITECTUREDESIGN FORSNAPEA

SnaPEA provides an accelerator architecture in order ito eff
ciently execute the CNN with the transformed convolutioarap
tions. Modern CNNs consist of several back-to-back layessid-
ing convolution, ReLU activation, pooling, and fully-caroted.
(10 provide an end-to-end solution, the accelerator acthite
consists of several units to execute the computation cliyairs in

ghe CNN. In order to efficient execution of CNNs, the arattitee,

specifically, targets to optimize the hardware of the carian
layers because of the following reasons. The first reastirats
the computation of the convolution layers dominates theative
runtime of modern CNN<?], [3], [7]-[10]. The second reason
is to execute the convolutions with the reordered weightst@n
support the predictive early activation at the hardwarelléo
perform the computations of the fully-connected layers stime
hardware unit designed for the convolution layers is engaoy
The fully-connected layers are mainly used to perform tigedhc
classification. CNNs usually have much smaller numberdhe or
two) of fully-connected layers compared to the convolutiyers
at the final stage of the network. For exam@eopgleNet has 57
convolution layers and onlgnefully-connected layer. On average,
the computation of fully-connected layers accounts fa#s of
the total number of computations performed in CNRIs[3], [8].
Therefore, using the same hardware unit for the fully-cotete
layers has virtually no impact on the total runtime of the GINN
Finally, the SnaPEA architecture consists of dedicatet$ timi
support the computations of ReLU activation and poolingiay
as well.

Figure 6 (a) illustrates the high-level block diagram of the
proposed accelerator architecture. The acceleratorstengia 2D
array of identical Processing Engines (PEs). Each PE ippedi
with an input and output buffer that communicates with the
off-chip memory. The weights of kernels and the inputs—ecami
from an off-chip memory—are stored in the dedicated buffers
within each PE. In the following, we explain each unit of the
accelerator architecture in more details.

Processing Engine (PE)Figure6 (b) depicts the microarchitec-

re of one PE in the SnaPEA architecture. Each PE comprises
multiple compute lanes, a weight and index buffer, an ot
buffer, and multiple Predictive Activation Units. Each qaute

lane consists of one dedicated Multiply-and-Accumulat&Qyl

{unit and one Predictive Activation Unit (PAU). The weiginiciex,

and input/output buffers are shared across all the compugs |
within each PE. The computation of a convolution layer irheRE
starts upon receiving a block of input features, their emoading
weights, and the weight indices from the off-chip memorg\ary
cycle, the PE controller reads one weight value from the uteig
buffer and broadcasts it to all the compute (MAC units) lafiée
PE controller also reads one weight index from the indexepuff
and sends the fetched index to the input buffer. Upon rexggivi

the configuration with the maximum merit value among all the index, the input buffer reads a set of values (one value pe
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(a) Block Diagram of SnaPEA Architecture (b) PE Microarchitecture

Figure 6: (a) The overall structure of the SnaPEA architectu re and its multilevel memory hierarchy, containing an off-c hip memory and a distributed on-chip buffer
for input and outputs. (b) The microarchitecture of each PE. The weights are shared across the compute lanes.

each MAC unit) and sends them to the MAC unit for processingoperations in the exact and predictive mode. Performing the
Each compute lane is dedicated to perform all the compuogatio convolution operations in the exact mode only requires éich

of one convolution window. That is, each MAC unit performs the sign of the partial sum value during the MAC operatiorth wi
the multiplication of one input and weight for each convolut  the negative weights. Accordingly, in the exact mode, theadi
window and sends the results to the accumulation regidter. T predictis set to zero which allows the sign-bit of the partial sum
accumulation register accumulates the partial sums fdn eacstored in the registetcc Regto determine the termination of the
convolution window. At the same time, the Predictive AdiMa. ~ convolution operations. Once the sign-bit becomes onesijginal
Unit (PAU) checks the values of the partial sums to determineerminateis asserted and notifies the controller to terminate the res
whether further computations for each convolution windew i of computations for the underlying convolution window.
required. If the PAU determines that no further computation In the predictive mode, the sign of the convolution output is
a convolution window is required, it data gates the cormadjpgy ~ speculated through the threshold valii® é&nd its associated num-
multiplier and accumulator to save energy. This processra@s  ber of operationsn which are statically determined through the
until either all the computations for the current convalntivindow  software part (See Algorithi). To perform speculation, PAU first
are performed or the PAU determines to apply the activatioly.e  checks the partial sum value, coming from the accumuladjistes,
Weight and index buffers. The weight buffer contains the weight With a threshold value after a pre-determined number of MAC
values of the convolution kernels in the pre-determinectiord operations. At this time, the controller sets the sigmedictto one.
(See SectionlV). The weights are ordered offline and loaded If the partial sum value is less than the pre-determinedtiate
into the memory with the proper ordering. Since the ordesing value, PAU predicts that the final value of this convolutieindow

the weights are changed, we also need to add an index buffer gl eventually become negative. In this case, the PAU paro
properly index the input buffer. This index is used to loadime  the following tasks: (1) notifies the controller that nothar
from the index buffer. In every cycle, the controller fetslmme ~ computations are required for this convolution window a2)d (
weight from the weight buffer and broadcasts it to all the pota ~ performs the early ReLU activation and sends zero to thesbutp
lanes. Simultaneously, the controller reads an index amisseto  buffer. If the partial sum value is larger than the pre-deteed

the input buffer to read the corresponding input value. fibeti  threshold, the compute lane continues the computatiortiaéor

buffer delivers the inputs to each compute lane to perforen onconvolution window normally until it reaches the nega_ti\xeights.
multiplication for adjacent convolution windows. The next check on the partial sum starts upon starting the MAC

Input/Output Buffers. The input buffer holds a portion of input OPerations with the negative weights. Here, the sigralictis

data for each convolution layer. Upon completion of all thede-asserted, and PAU periodically performs a simple orsign
check on the partial sum values after each MAC operationdigsi

to the process mentioned in the exact mode. Once the sign-bit

becomes one, the PAU terminates the convolution operatfons

computations, the results are written into the output buffe use
one physical buffer for inputs and outputs. However, théebuf
is logically divided into two sub-buffers for holding thepint and .
output data of each layer. The logical partitioning allowsause ~ the current window and sends a zero value to the output.

each of the sub-buffers as an input or an output buffer. Thetee ~ The mechanism of dynamically checking the partial sum ealue
of a layerl stored in the output buffer may be used by the nextMight lead to idle computation lanes. These computatiogslan

layerl + 1in . In this case, the data of each sub-buffers are logicallfémain idle until the rest of the lanes finish the computetiof
swapped without wasting additional cycles for data transfe their assigned convolution window. Accordingly, incregsthe

Predictive Activation Unit (PAU). Figure 7 illustrates the compqtatiop lanes may result in making more Iangs idle_ tespi
microarchitecture of the Predictive Activation Unit (PA@ne  Providing higher parallelism between the convolution vaine.

PAU unit is added to each compute lane to support the cofwolut In SectionVI, we evaluate the effect of increasing computation
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6&7'89&) L 12)32) The model size shows the size of weights in Megabytes.
Model Size | # of Layers | Classibcation
. Network Year (MB) Conv. | FC Accuracy
N ~"#3%&' ()%
*$H+&, +" 0&() AlexNet 2012 224 5 3 72.6%
1 GooglLeNet 2015 54 57 1 84.4%
Figure 7: Prediction Activation Unit (PAU). The Predict sig nal determines the SqueezeNet 2016 6 26 1 74.1%
PAU operation mode (exact or predictive). The Terminate sig  nal, once asserted, VGGNet 2014 554 13 3 83.0%

terminates the computation early.

lanes on the idle cycles and their effects on the performande
energy savings.

Table I: Workloads, their released year, model size, number

of convolution

(Conv.) and fully-connected ( FC) layers, and baseline classification accuracy.

Table Il: SnaPEA and EYERISS [2] design parameters and area breakdown.

. . . . SnaPEA EYERISS
Pooling unit. Once the computations of a group of convolution - > : | p
X K X ize Area (mm <) Size Area (mm <)
windows complete, the PE performs the pooling operatioten t
. . # Compute Lanes / PE 4 0.012 1 0.003
results. Once done, the PE writes the results back into tipeitou Partial Sum Register N/A 0 8B 0.002
buffer. These results are either used in the computatiotigeof | mput Register N/A 0 24B | 0.001
: - ~hi £ |a | Weight Bu ! er 0.5 KB 0.014 0.5 KB 0.014
next layers of CNN_s or \_ertten_back to the off-chip memory, if decBul o 05 KB T 0007 VA 5
no further computations is required. Input/ Output RAM 20KB | 0.250 N/A 0
Organization of PEs.As shown in Figurel2, the SnaPEA archi- IPfediC“VG Activation Units I 4 l 0.008 I N/A l 0 ‘
: : : : ; : < [Number of PEs 64 18.62 256 4.94
tecture contains multiple identical PEs organized in a 2Byar 8/ Giobal But er TnA T o [izmsve] 129 |

The PEs are logically grouped batérticallyandhorizontally The

input data are partitioned between the horizontal PEs ankicth
nels are partitioned between the vertical PEs. The PEs seiine
horizontal and vertical groups work on the same portion @fith
put data and kernels, respectively. Before the computatats, a
portion of input data are broadcasted to all the PEs withérséime
horizontal group. Similarly, one or more kernels are braatid to

GCC v4.8.4with maximum architecture-specific and compiler
optimizations enabled. We configure Caffe to nsiglia cuDNN
v6.0, a highly tuned GPU-accelerated deep neural networkyibrar

Training/testing datasets. To learn the threshold values and

the PEs within the same vertical group. After the input anddle  their associated set of operations for each kernel, we mepie
data distribution, the PEs start and proceed their compugat Algorithm 1 through updating the data of convolutional layers in
independent from other PEs. Once the computations foreall thCaffe v1.0 We uniformly sample a subset of images from each of
PEs within the same horizontal group end, the on-chip buffethe 1,000 classes imageNe{1] to obtain the training and testing
delivers the next portion of input data. In this partitiamisome of ~ datasets for the proposed algorithm. The uniform samphingne

the PEs may finish their computations earlier than othenn all the classes enables us to cover images from distinctedas
the same horizontal group. These PEs remain idle until@tther ~ during the training and testing phases of Algoritihm

PEs complete their computations for all the assigned keamel in-  Architecture design and synthesis. We implement the

put data portion. This synchronization mechanism redineesdst ~ microarchitectural units of the proposed architecturtidting the

of multiple data broadcasting among the PEs while havingadlsm controllers, PEs, predictive activation unit (PAU), andiseers
impact on the performance. We evaluate the impact of thishegn  in Verilog. We usesynopsys Design Compiler (L-2016.03-SR#)d
nization mechanism in Sectidf-B by analyzing the sensitivity aTSMC 45-nmstandard-cell library to synthesize the proposed
of performance to the number of compute lanes per each PE. architecture and obtain the area, delay, and energy nuroities
logic hardware units.

SnaPEA and baseline architecture configurations.In this

A. Methodology paper, we explore a@ 8 array of PEs in SnaPEA, each with
Workloads. We use several popular medium to large scale denstour compute lanes, with a total 266 MAC units. However, the
CNN workloads. We also includgqueezeNet [6] that maintains ~ SnaPEA architecture can be scaled up to larger numbers of PEs
AlexNet-level accuracy withs0 fewer parameters through a Tablell lists the major architectural parameters of the SnaPEA
static pruning approach. The fewer parametersdieezeNet ~ design. We add a weight buffer and an index buffer, eacke.5
are attained using an iterative pruning and re-traininghef t per each PE. Both weight and index buffers are shared adfoss a
convolution weights. Tablesummarizes the evaluated networks the compute lanes within each PE. Each PE is also equippled wit
and some of the most pertinent parameters such as model si2e20<B buffer, that is evenly divided between input and output.
number of convolution layers (Conv.), number of fully-cented ~ The total capacity of the buffers therefore is IMES Similar to the
layers (FC), and the baseline classification accuracyl tithe ~ Weight and index buffers, both input and output buffers hegel
evaluations, we useSVRC-2012[1] validation dataset. across all the compute lanes within a PE. Sharing the on-chip
System setup.We usecaffe v1.0[11] to run the pre-trained Memories across multiple PEs enables us to reduce the aderhe

networks on a GPU. We compitaffe usingnvec ve.0.62and  Of index buffers. We size the input and output buffer so thet t

VI. EVALUATION
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